More than an Advisory Committee Engaging farmers in watershed improvement projects Chad Ingels ISU Extension Watershed Projects Wisconsin River Water Quality Improvement Symposium February 14, 2014 The first follower is what transforms a lone nut into a leader. - Derek Sivers at TED Feb 2010 # Starting a movement Develop incentive structure Establish water monitoring Set goals and evaluate progress Use local data and outside resources Regular meetings Non-profit status # **Watershed Councils** ## **Awareness** ## **Awareness** **Assessment** # **Assessment** Install 5 sub-subsurface denitrifying bioreactors in priority tile-drained fields Install vegetative filter strips or seed cover crops on 20 fields receiving manure applications Restrict livestock stream access or provide an offstream watering source at 6 of 17 watershed locations where livestock currently access the stream # **Goals-Plans** Reduce annual sediment delivery to North Fork River Headwaters by an additional 7,500 tons Watershed participation rate of 85% Watershed Averages: IPI - 2.00, SCI - 0.6, CNT - 2,000 ppm # **Goals-Benchmarks** Two consecutive years of season-long, rain event, average total phosphorus water analysis of less than 1.40 mg/L at monitoring site 3 A recreation season indicator bacteria (E. coli) geometric mean less than the Class A2 criterion of 630 orgs/100 ml at monitoring site DRC 19 # **Goals-Outcomes** # **Targeting** #### Hewitt Creek Watershed Phosphorus Index Soil Conditioning Index Listing - 2012 | FARM ID | FIELD ID | ACRES | P INDEX | SCI | SOIL TEST P | STREAM DIS | ROTATION | CONTOUR | NOTILL | |----------|----------|--------------|--------------|--------------|-------------|-------------|-----------|---------|--------| | 51 | 11 | 4.4 | 8.72 | 0.82 | 535 | 200 | ссонн | N | | | 19 | H6 | 10.0 | 8.34 | 0.12 | 248 | 3230 | CCCOMMM | N | | | 41 | 4A | 20.3 | 7.20 | -0.04 | 145 | 800 | CC | Y | | | 48 | middle | 43.4 | 6.34 | -0.04 | 105 | 1290 | CCCOAA | | | | 15 | 2B | 12.9 | 6.30 | 0.09 | 61 | 450 | ccs | Y | | | 51 | 10 | 1.1 | 6.30 | 0.70 | 224 | 630 | ссонн | N | | | 31 | 5 | 6.6 | 5.84 | 0.56 | 148 | 480 | CCOMMM | Y | | | 41 | 4B | 9.5 | 5.82 | 0.42 | 145 | 185 | cc | Y | | | 26 | 8 | 6.2 | 5.56 | 0.45 | 45 | 280 | сссоннн | N | | | 30 | N4 | 20.7 | 5.26 | 0.06 | 22 | 220 | cs | Y | | | 26 | 7 | 6.4 | 5.21 | 0.27 | 58 | 990 | сссоннн | N | | | 48 | south | 39.9 | 5.09 | 0.10 | 78 | 1180 | CCCOAA | | | | 6 | R3 | 22.3 | 5.06 | 0.46 | 99 | 600 | сссоннн | Y | | | 11 | 51 | 62.1 | 4.97 | -0.02 | 47 | 880 | CCS | N | | | 13 | 1 | 37.4 | 4.96 | 0.37 | 105 | 330 | CC | N | | | 23 | H-east | 67.6 | 4.87 | 0.45 | 277 | 1550 | CC | N | | | 26 | 4 | 16.7 | 4.82 | 0.12 | 42 | 1770 | сссоннн | N | | | 44 | H-2 | 48.0 | 4.80 | 0.28 | 125 | 940 | cc | Υ | | | 18 | 5A1 | 7.3 | 4.72 | 0.16 | 47 | 610 | ссоннн | N | | | 6 | R5 | 14.0 | 4.68 | 0.26 | 59 | 1110 | сссоннн | N | | | 45 | H-7 | 6.9 | 4.63 | 0.22 | 43 | 250 | CCS | N | Υ | | 15 | 6 | 3.1 | 4.63 | 0.43 | 50 | 430 | ссоннн | Y | | | 13 | 2 | 113.2 | 4.62 | 0.23 | 145 | 1090 | cc | N | | | 15 | 7 | 2.6 | 4.62 | 0.43 | 90 | 1420 | ссоннн | Y | | | 43 | 1 | 32.4 | 4.53 | 0.00 | 32 | 1080 | CC | Y | | | 37 | 2 | 18.8 | 4.46 | 0.45 | 99 | 1530 | сссоннн | N | | | 35 | W2 | 18.4 | 4.45 | 0.27 | 23 | 340 | сссоннн | Y | | | 18 | 4A | 13.4 | 4.43 | 0.44 | 34 | 150 | ссоннн | N | | | 31
19 | 4
H4 | 19.4
28.9 | 4.36
4.35 | 0.56
0.51 | 92
219 | 330
4740 | CCCOMMM | Y
N | | | 56 | south 3 | 5.6 | 4.33 | 0.16 | 49 | 640 | CCCOMINIM | N | | | 6 | R2 | 12.1 | 4.29 | 0.16 | 115 | 990 | сссоннн | Y | | | 25 | 2 | 8.2 | 4.29 | 0.46 | 132 | 560 | CCB | N N | | | 26 | 1 | 9.8 | 4.26 | 0.69 | 111 | 325 | СССОННН | N
N | | | 48 | north | 32.9 | 4.23 | 0.44 | 126 | 1220 | CCCOAA | | | | 41 | 1-2 | 50.0 | 4.19 | -0.04 | 49 | 450 | CC | Y | | | 29 | H2 | 15.8 | 4.18 | 0.43 | 54 | 800 | ссонннн | N. | | | 35 | W4 | 9.0 | 4.14 | 0.17 | 58 | 670 | сссоннн | Y | | | 28 | E2 | 4.0 | 4.07 | 0.47 | 143 | 1550 | СССОННН | Ň | | | 8 | JM1 | 12.8 | 4.03 | 0.58 | 153 | 600 | сссоннн | Y | | | 26 | 6 | 19.9 | 4.02 | 0.44 | 41 | 760 | сссоннн | Ý | | | 26 | 2 | 12.0 | 4.01 | 0.30 | 46 | 380 | сссоннн | Ý | | | 6 | R6 | 13.4 | 3.97 | 0.62 | 94 | 810 | СССОННН | Ň | | | 44 | H-8 | 20.1 | 3.95 | 0.23 | 80 | 1930 | cc | N | | | 51 | 17 | 3.2 | 3.91 | 0.80 | 245 | 220 | ссонн | N | | | 6 | B4 | 12.9 | 3.89 | -0.04 | 73 | 740 | CC | Y | | | 26 | 3 | 16.6 | 3.88 | 0.40 | 65 | 1100 | сссоннн | N | | | 8 | H5 | 6.6 | 3.84 | 0.41 | 51 | 1130 | cc | Y | | | 19 | H2 | 8.4 | 3.83 | 0.54 | 204 | 4915 | сссоммм | N | | | 37 | 3 | 20.9 | 3.82 | 0.45 | 70 | 1400 | сссоннн | N | | | 53 | 6-LF | 15.1 | 3.80 | 0.42 | 55 | 620 | CCOMMMM | N | | | 19 | H7 | 20.7 | 3.78 | 0.47 | 105 | 3940 | сссоммм | N | | | 30 | 51 | 12.0 | 3.76 | 0.30 | 20 | 340 | cs | Y | | | 41 | 5-7 | 59.1 | 3.74 | -0.04 | 39 | 580 | cc | Y | | | 6 | R1 | 35.8 | 3.74 | 0.46 | 78 | 1290 | сссоннн | Y | | | 28 | E1 | 29.5 | 3.74 | 0.47 | 85 | 1230 | сссоннн | N | | #### Hewitt Creek Watershed Phosphorus Index Soil Conditioning Index Listing - 2012 | | | | | | - | - | | | | |----------|--------------|-------------|--------------|---------------|-----------|-------------|----------|--------|--------| | FARM ID | FIELD ID | ACRES | P INDEX | SCI | | | ROTATION | | NOTILL | | 34 | 6 | 12.0 | 3.74 | 0.77 | 175 | 1060 | CC | Y | | | 48 | east | 33.3 | 3.71 | 0.56 | 151 | 700 | CCCOAA | Y | | | 45 | Kr-4 | 16.6 | 3.68 | 0.21 | 38 | 1070 | CCS | Y | Υ | | 43 | 52 | 2.8 | 3.62 | -0.02 | 56 | 3720 | CC | Y | | | 29 | НЗ | 44.6 | 3.58 | 0.21 | 26 | 2890 | ссонннн | N | | | 30 | N2 | 17.3 | 3.56 | 0.25 | 12 | 300 | cs | N | | | 51 | 15 | 11.7 | 3.54 | 0.80 | 207 | 400 | ссонн | N | | | 25 | 3 | 18.3 | 3.51 | 0.30 | 64 | 1360 | CCB | N | | | 25
43 | 5
51 | 37.0
6.9 | 3.51
3.50 | 0.41
-0.02 | 48
27 | 610
3500 | CCB | N
Y | | | 45 | H-10 | 10.6 | 3.49 | 0.75 | 133 | 340 | œ | N N | | | 23 | 80
80 | 78.5 | 3.49 | 0.75 | 165 | 1940 | œ | N
N | | | 11 | N2 | 45.6 | 3.45 | 0.41 | 47 | 2600 | ccs | N
N | | | 44 | H-6 | 23.0 | 3.43 | 0.09 | 56 | 760 | cc | Y | | | 18 | 6A | 9.8 | 3.43 | 0.44 | 40 | 290 | ссоннн | N. | | | 10 | 5 | 14.8 | 3.42 | 0.63 | 169 | 1130 | CCOMMM | N N | | | 24 | 5 | 15.2 | 3.41 | 0.10 | 102 | 5200 | CCS | Y | | | 8 | B1 | 65.5 | 3.40 | 0.26 | 42 | 650 | CCCS | Ň | | | 50 | 17 | 4.3 | 3.35 | 0.28 | 34 | 250 | cs | - | | | 6 | W5 | 10.1 | 3.35 | 0.46 | 51 | 880 | сссоннн | Y | | | 25 | 4 | 48.7 | 3.31 | 0.30 | 65 | 860 | CCB | N | | | 3 | 10H | 6.3 | 3.30 | 0.59 | 75 | 580 | ссонннн | N | Y | | 51 | 18 | 18.1 | 3.28 | 0.79 | 129 | 600 | ссонн | Y | | | 53 | 4-LFs | 11.3 | 3.24 | 0.42 | 45 | 760 | ссомммм | Y | | | 19 | Н3 | 32.0 | 3.23 | 0.72 | 169 | 6620 | CCCOMMM | N | | | 29 | P2 | 18.4 | 3.19 | 0.45 | 11 | 510 | ссонннн | Y | | | 19 | 52 | 8.9 | 3.18 | 0.47 | 87 | 3040 | CCCOMMM | N | | | 11 | N3 | 44.7 | 3.17 | 0.09 | 47 | 4060 | ccs | N | | | 24 | 2 | 17.7 | 3.15 | 0.10 | 68 | 3010 | ccs | Y | | | 31 | P | 6.8 | 3.14 | 0.39 | 68 | 850 | Pasture | N | Y | | 57 | F north 3 | 17.0 | 3.13 | -0.05 | 17 | 1440 | CS | Y | | | 19 | H5 | 22.0 | 3.13 | 0.47 | 109 | 4130 | CCCOMMM | N | | | 57 | F north 1 | 25.0 | 3.12 | 0.30 | 24 | 620 | cc | Y | | | 8 | JM8 | 13.8 | 3.12 | 0.36 | 60 | 900 | CC | Y | | | 26 | 5 | 16.5 | 3.10 | 0.37 | 52 | 3000 | сссоннн | N | | | 8 | НЗ | 45.0 | 3.10 | 0.38 | 50 | 910 | cccs | Y | | | 8 | JM6 | 48.8 | 3.08 | 0.05 | 34 | 720 | CC | Y | | | 30 | N3 | 11.7 | 3.08 | 0.25 | 17 | 360 | CS | N
Y | | | 35 | W3 | 27.9 | 3.06 | 0.51 | 36 | 410 | сссоннн | - | | | 30
23 | S8
H-west | 6.8
42.7 | 3.06
3.06 | 0.68
0.75 | 37
165 | 190
990 | CCOHH | Y
N | | | 44 | H-4/5 | 37.6 | 3.04 | 0.75 | 40 | 1150 | cc | Y | | | 6 | M3 | 10.4 | 3.04 | 0.28 | 28 | 1230 | сссоннн | Y | | | 29 | P3 | 10.4 | 3.02 | 0.40 | 18 | 490 | ссоннн | Ÿ | | | 6 | R4 | 72.8 | 3.02 | 0.46 | 66 | 1510 | сссоннн | Ÿ | | | 8 | JM4 | 38.4 | 3.00 | 0.31 | 56 | 1740 | CC | N | | | 50 | T3 | 35.9 | 2.98 | 0.31 | 34 | 500 | cs | N | Y | | 18 | 5A2 | 8.7 | 2.97 | 0.44 | 71 | 1490 | ссоннн | N | | | 56 | south 2 | 61.4 | 2.96 | 0.48 | 40 | 1730 | CCOAAA | Y | | | 6 | W4 | 41.8 | 2.95 | 0.46 | 42 | 2000 | СССОННН | Ÿ | | | 5 | 11 | 55.0 | 2.91 | 0.47 | 76 | 1540 | ccccs | Ÿ | | | 35 | W1 | 32.1 | 2.91 | 0.51 | 57 | 460 | сссоннн | Υ | | | 43 | 2b | 30.7 | 2.90 | 0.27 | 49 | 2030 | cccs | Υ | | | 35 | W5 | 22.2 | 2.89 | 0.53 | 70 | 1270 | сссоннн | Y | | | 5 | 12 | 6.6 | 2.89 | 0.63 | 133 | 6410 | ccccs | N | | | 5 | 8 | 25.2 | 2.88 | 0.59 | 79 | 960 | CCCAAA | Υ | | | | | | | | | | | | | 1/8 #### Hewitt Creek Watershed Phosphorus Index Soil Conditioning Index Listing - 2012 | FARM ID | FIELD ID | ACRES | P INDEX | SCI | | | ROTATION | CONTOUR | NOTILL | |----------|------------|--------------|--------------|--------------|----------|-------------|----------|---------|--------| | 50 | T2 | 46.9 | 1.73 | 0.37 | 18 | 1040 | CS | N | Y | | 25 | 1 | 13.9 | 1.73 | 0.59 | 75 | 990 | CCB | N | | | 30 | N1 | 46.2 | 1.73 | 0.68 | 12 | 1140 | ссонн | Y | | | 16 | 6 | 8.9 | 1.73 | 0.95 | 54 | 1160 | CC | Y | Υ | | 4 | 52 | 17.1 | 1.72 | 0.39 | 12 | 590 | cs | N | Υ | | 29 | P1 | 26.7 | 1.72 | 0.59 | 16 | 1280 | ссонннн | Y | | | 34 | 5 | 4.4 | 1.72 | 0.83 | 63 | 640 | CCCOAAA | Y | | | 24 | | 44.9 | 1.71 | 0.36 | 49 | 3250 | ccs | Y | | | 45
3 | Kr-3
8H | 7.9
9.4 | 1.70
1.69 | 0.41
0.67 | 23
53 | 1610
990 | CCOHHH | Y
N | Y | | 8 | H4 | 42.3 | 1.69 | 0.67 | 64 | 1720 | СССОННН | Y | | | 18 | 5A3 | 4.0 | 1.69 | 0.74 | 53 | 720 | ссонни | N N | | | 12 | 2 | 36.6 | 1.68 | 0.72 | 126 | 2120 | CS | Y | Υ | | 45 | H-1 | 26.7 | 1.66 | 0.72 | 121 | 510 | œ | N | | | 16 | 5 | 6.6 | 1.66 | 0.82 | 54 | 1160 | ccs | Ϋ́ | Y | | 45 | Ke-3 | 41.2 | 1.65 | 0.59 | 30 | 1940 | ccs | N. | Ý | | 5 | 3 | 39.0 | 1.64 | 0.44 | 33 | 4870 | ccccs | Ϋ́ | | | 8 | H2 | 19.0 | 1.62 | 0.76 | 60 | 2390 | СССОННН | Ň | | | 28 | Bo1 | 36.7 | 1.62 | 0.80 | 64 | 530 | CSCOHHH | N | | | 24 | 1 | 33.3 | 1.60 | 0.30 | 42 | 4280 | CS | Y | | | 24 | 3 | 50.2 | 1.59 | 0.36 | 38 | 3120 | ccs | Ý | | | 34 | 4 | 5.2 | 1.59 | 0.78 | 51 | 630 | CCCOAAA | Ÿ | | | 56 | south 1 | 30.0 | 1.57 | 0.79 | 51 | 800 | cc | | | | 21 | 4A | 6.4 | 1.56 | 0.74 | 45 | 180 | CCCGraze | N | N | | 34 | 7 | 6.1 | 1.55 | 83.00 | 45 | 560 | CCCOAAA | Y | | | 50 | P3 | 16.8 | 1.54 | 0.48 | 26 | 840 | CC | Y | Y | | 45 | Ke-1 | 35.9 | 1.54 | 0.59 | 26 | 3270 | cc | N | | | 31 | 2 | 22.3 | 1.54 | 0.82 | 62 | 1230 | CCOMMM | N | | | 51 | 12 | 8.2 | 1.53 | 1.10 | 311 | 320 | Pasture | N | Y | | 28 | E4 | 26.3 | 1.52 | 0.77 | 105 | 3600 | CSCOHHH | N | | | 7 | 5-Aks | 3.4 | 1.52 | 0.91 | 41 | 200 | CC | N | | | 2 | NW34 E2 | 5.6 | 1.51 | 0.29 | 10 | 1760 | CS | N | Y | | 7 | 8A | 65.5 | 1.51 | 0.57 | 68 | 1410 | CC | N | | | 15 | 9A | 8.2 | 1.50 | 0.81 | 93 | 1030 | ссоннн | Y | | | 34 | 1A-3 | 9.7 | 1.48 | 0.78 | 29 | 550 | CCCOAAA | Y | | | 49 | South | 43.2 | 1.45 | 0.58 | 20 | 3890 | cs | N | | | 58 | west | 51.7 | 1.44 | 0.71 | 46 | 4790 | cc | Y | | | 55 | 1 | 7.5 | 1.42 | 0.56 | 69 | 1880 | CS | N | | | 49 | North | 35.3 | 1.42 | 0.58 | 16 | 2950 | CS | N | | | 4 | JPW1 | 24.9 | 1.40 | 1.10 | 62 | 490 | cc | N | Y | | 4 | 53 | 3.8 | 1.38 | 0.47 | 24 | 560 | cs | N | Y | | 2 | west
98 | 27.5 | 1.34 | 0.59
0.81 | 25
63 | 990
530 | CCOHHH | Y | Y | | 15
34 | 1A-4 | 13.7
15.0 | 1.34
1.34 | 0.81 | 74 | 1900 | CC | Y | | | 2 | NW34 west | 3.5 | 1.34 | 0.97 | 10 | 2550 | cs | N N | Υ | | 29 | P5 | 16.5 | 1.33 | 0.55 | 18 | 2040 | ССОННИН | Y | Y | | 16 | 2 | 8.7 | 1.31 | 0.82 | 74 | 1200 | CCS | Ý | Y | | 2 | B4 | 75.5 | 1.30 | 0.61 | 46 | 2350 | cs | Ý | Ÿ | | 12 | 1 | 36.0 | 1.30 | 0.72 | 72 | 3160 | cs | Ý | Ÿ | | 37 | 1A | 19.8 | 1.27 | 0.72 | 43 | 2530 | СССОННН | N N | | | 17 | middle | 3.8 | 1.27 | 0.08 | 28 | 140 | CS | N
N | Y | | 7 | 3-4A | 61.3 | 1.26 | 0.74 | 63 | 960 | œ | N | | | 56 | north 3 | 2.6 | 1.25 | 0.87 | 49 | 100 | CCOAAA | | | | 36 | H1 | 24.4 | 1.24 | 0.65 | 40 | 4700 | CS | Y | Y | | 56 | north 4 | 8.6 | 1.24 | 0.76 | 49 | 310 | CCOAAA | • | | | 12 | 4 | 18.4 | 1.23 | 0.72 | 93 | 1075 | CS | Y | Υ | | | | | | | | | | | | #### Hewitt Creek Watershed Phosphorus Index Soil Conditioning Index Listing - 2012 | | | | | | • | | | | | |----------|--------------|--------------|--------------|------|-----------|-------------|------------|---------|--------| | FARM ID | FIELD ID | ACRES | P INDEX | SCI | | | S ROTATION | CONTOUR | NOTILL | | 4 | R5 | 28.8 | 1.22 | 0.62 | 29 | 490 | cs | Y | Y | | 38 | D-n | 47.4 | 1.22 | 0.78 | 42 | 1570 | cc | N | | | 5 | 10 | 161.2 | 1.21 | 0.74 | 46 | 5860 | cc | Y | | | 4 | H1 | 101.7 | 1.18 | 0.76 | 73 | 1990 | ccs | Y | Y | | 4 | 51 | 74.5 | 1.17 | 0.65 | 38 | 2510 | cs | N | Y | | 2 | center | 134.8 | 1.16 | 0.59 | 34 | 1280 | cs | Υ | Υ | | 43 | 5 | 25.0 | 1.15 | 0.71 | 32 | 3070 | CCOAAA | Y | | | 32 | r3 s | 39.1 | 1.15 | 0.79 | 110 | 3620 | CS | N | Υ | | 2 | Dodge S | 20.6 | 1.14 | 0.66 | 12 | 5030 | CS | N | Υ | | 33 | n2 | 73.2 | 1.14 | 0.71 | 46 | 540 | CS | Υ | Y | | 22 | 1 | 62.4 | 1.14 | 0.71 | 30 | 1820 | cs | N | Υ | | 7 | 2Ae | 17.2 | 1.14 | 0.73 | 49 | 1400 | CCOMMM | Y | | | 33
1 | n3
I | 36.5
53.4 | 1.14
1.13 | 0.79 | 89
113 | 410
2690 | cs
cs | Y
Y | Y | | 3 | 5H | | | | 50 | 2060 | CCCS | N N | Y | | 40 | | 19.4
55.2 | 1.13 | 0.84 | 21 | 2880 | CS | N
N | Y | | 40
45 | South
V-3 | 22.7 | | 0.62 | 17 | | CS | Y | Υ | | 45
32 | V-3
r2 | 25.0 | 1.08 | 0.54 | 1/
50 | 1960
540 | CS | Y | Y | | 37 | 1B | 19.0 | 1.06 | 0.71 | 25 | 2820 | СССОННН | N N | | | 3/ | 6Hb | 3.1 | 1.06 | 0.71 | 68 | 1750 | ссонин | N | Υ | | 45 | V-2 | 39.9 | 1.05 | 0.71 | 20 | 840 | CS | Y | Ÿ | | 29 | V-2
P7 | 13.5 | 1.05 | 0.07 | 19 | 1500 | ССОНННН | N N | | | 36 | H2 | 71.6 | 1.05 | 0.75 | 40 | 6700 | CS | N | Y | | 51 | 13 | 13.8 | 1.04 | 1.10 | 201 | 440 | Pasture | N | Ÿ | | 44 | T-2 | 77.6 | 1.02 | 0.77 | 13 | 1200 | CS | N | Ÿ | | 33 | n1 | 78.5 | 1.02 | 0.88 | 33 | 780 | cs | N | Ÿ | | 28 | E3 | 11.9 | 1.00 | 0.73 | 100 | 1800 | Pasture | N | Ý | | 16 | 1 | 10.2 | 1.00 | 0.97 | 87 | 900 | cc | Y | Ý | | 1 | i | 58.0 | 0.99 | 0.72 | 48 | 2300 | cs | Ý | Ý | | 12 | 3 | 12.8 | 0.98 | 0.72 | 66 | 1430 | cs | Ÿ | Ÿ | | 2 | Dodge N | 18.0 | 0.97 | 0.83 | 22 | 4490 | cs | N | Υ | | 22 | 2 | 8.6 | 0.96 | 0.71 | 23 | 1120 | cs | Y | Ÿ | | 4 | JPE4 | 33.3 | 0.96 | 1.10 | 105 | 1580 | cc | N | Ý | | 38 | D-m1 | 23.6 | 0.95 | 0.47 | 47 | 560 | cs | N | | | 17 | north | 7.0 | 0.95 | 0.69 | 25 | 520 | cs | N | Y | | 7 | 1A | 19.0 | 0.95 | 0.74 | 16 | 350 | cc | N | | | 40 | North | 61.9 | 0.93 | 0.62 | 16 | 3810 | cs | N | | | 3 | 4H | 21.2 | 0.93 | 0.75 | 42 | 4520 | cccs | Y | Υ | | 14 | a7 | 47.3 | 0.92 | 0.71 | 15 | 750 | cs | Y | Y | | 32 | r1 | 82.3 | 0.91 | 0.71 | 38 | 1590 | cs | Y | Υ | | 4 | 54 | 11.8 | 0.91 | 1.10 | 13 | 430 | cc | N | Y | | 16 | 4 | 21.1 | 0.90 | 0.82 | 49 | 1440 | ccs | Y | Y | | 5 | 2 | 36.3 | 0.90 | 0.87 | 54 | 2300 | ccccs | Y | | | 50 | T6 | 5.4 | 0.89 | 0.66 | 21 | 500 | cs | N | Y | | 38 | D-s | 29.3 | 0.88 | 0.48 | 26 | 520 | cs | N | | | 50 | P2 | 27.9 | 0.88 | 0.58 | 25 | 1000 | CC | Y | Υ | | 44 | T-3 | 52.8 | 0.87 | 0.75 | 10 | 1760 | cs | N | Y | | 27 | NE-2 | 25.2 | 0.86 | 0.63 | 12 | 4070 | | N | | | 17 | south | 21.1 | 0.85 | 0.69 | 28 | 380 | cs | N | Υ | | 34 | 1A-1b | 16.6 | 0.84 | 0.70 | 51 | 920 | cc | Y | Y | | 14 | a 2 | 16.8 | 0.84 | 0.71 | 13 | 400 | CS | Υ | Υ | | 38 | D-m2 | 6.3 | 0.83 | 0.72 | 50 | 320 | cs | N | | | 15 | 4 | 2.2 | 0.83 | 1.10 | 90 | 310 | cc | Y | Y | | 4 | R4 | 33.1 | 0.82 | 0.79 | 31 | 1200 | CS | N | Υ | | 50 | P4 | 3.8 | 0.81 | 0.48 | 8 | 1250 | CC | Υ | Υ | | 36 | N2 | 22.4 | 0.81 | 0.65 | 17 | 480 | CS | Y | Y | 5/8 ### 2012 HEWITT CREEK PERFORMANCE-BASED FARM and WATERSHED ENVIRONMENTAL MANAGEMENT PROGRAM | [Payments near July 1 and December 1 may be prorated if participation exceeds \$45,000]. | |---| | PHOSPHORUS INDEX (PI) Maximum \$10.00/A. See P Index explanation on back of this page. \$500 first year payment if the weighted whole farm P Index is less than a phosphorus loss risk of 3 (2-5 is medium risk). All field scores weighted by the field size and risk of P loss from each field to attain a weighted average farm P-index. \$100 paid for annual data and P-index review after the first year. \$150 bonus if the P-index is 2 or less (low) or for each 0.3 reduction in P Index. \$10 per management area or field tested for soil test P, at least 10 acres per sample (max 4/yr for 5 years). Not to be included with grid sampling. | | SOIL CONDITIONING INDEX (SCI) Maximum \$10.00/Ac. See back for SCI explanation. \$200 first year payment per 0.1 SCI above 0 for whole farm weighted average of all fields. Example: A weighted average farm SCI of 0.4 will provide a payment of \$800. \$100 per 0.1 SCI for annual data and SCI review after the first year. \$200 paid for each 0.1 improvement in the annual SCI. | | NITROGEN PERFORMANCE MANAGEMENT (Corn Stalk Nitrate-Nitrogen analysis) \$400 payment if the farm weighted average analyses does not exceed 1,700ppm. \$200 bonus if the weighted average (Max. 50 acres/field) is less than 1,300ppm. \$100 for the first two NO ₃ N samples and \$40 for each additional sample (max 4 samples). | # **Targeting Performance** | OTHER INCENTIVES | | | |---------------------------------------|-------------------------------|--------------------------------| | \$200 First time manure application | n calibration and manure a | nalysis. | | \$50 Additional manure analyses t | taken and results reported ! | by project cooperators (first | | time calibration required). | | | | \$20 Per acre up to 40 acres for fall | ll cover crop on corn silag | e or soybean stubble. | | \$300 Grid sampling and variable ra | ate fertilizer application (4 | 0 acres/year for 5 years). | | \$200 Install a below-feedlot grass: | filter, pre-lot water diversi | on or roof gutters. | | \$200 Managed grazing (5 or more | paddocks). | | | \$200 Septic system up-grade. Low | v interest revolving fund lo | oans available (515-242-6043). | | \$200 Farmstead or Streambank As | ssessment (first time self as | ssessment or changes- | | improved assessment). | | | | \$0.50/ft., maximum 1,200 ft., new, | repaired or reconstructed | waterways, headlands, or | | buffers, minimum 30' width. | Must be maintained for 5 | years, may be hayed or | | grazed, minimum 25# brome | _ | ıg. | | \$200 Install fabric during waterwa | y installation and repair. | | | \$2000 New or improved feedlot ru | noff controls -consulting | with Extension Ag Engineer. | | | | | | WATERSHED ENVIRONMENTAL PI | ERFORMANCE | | | \$200 Bonus for achieving 85% of | | <u>-</u> | | program. Payable to coopera | _ | watershed improvement | | incentives per farm operation | 1. | | | | | | | Name | Address | Phone | | | Email address | Cell Phone | | | | | # **Targeting Performance** ### **Iowa Phosphorus Index** - Soil loss - Distance to stream - Soil test P - Management practices - P application - Drainage A measure of the risk of phosphorus loss to the environment Measured on a scale of 0 to >15 with lower being better # **Performance** ### **Soil Conditioning Index** - Soil map unit - Tillage practices and timing - Crop rotation - Yield level - Management practices - Manure applications Measured on a scale of -1 to 1.1 with higher being better Positive values predict increase in organic matter # **Performance** #### **Fall Cornstalk Nitrate Test** Measures amount of nitrate remaining in the corn plant at maturity Plants with inadequate N remove N from the lower cornstalk and leaves during grain fill # **Performance** | PI Category | # of fields | total acres | avg. Pl | avg. SCI | avg. soil P | avg. distance | % hay/graze | % contour | % no till | |-------------|--------------|-------------|---------|----------|-------------|---------------|-------------|-----------|-----------| | >5 | 13 | 204 | 5.98 | 0.16 | 109 | 932 | 69 | 46 | 0 | | 3 to 5 | 89 | 2115 | 3.77 | 0.33 | 86 | 1398 | 58 | 45 | 4 | | 2 to 3 | 98 | 2610 | 2.46 | 0.48 | 58 | 1855 | 61 | 49 | 11 | | 1 to 2 | 108 | 3122 | 1.40 | 0.82 | 49 | 2312 | 41 | 47 | 45 | | 0 to 1 | 65 | 1630 | 0.76 | 0.76 | 33 | 1748 | 6 | 38 | 85 | | No PI | <u>21</u> | <u>531</u> | | 0.46 | | 1786 | | | | | | 394 | 10,212 | | | | | | | | | 2012 Water | shed Weighte | d Average | 2.19 | 0.59 | 58 | 1861 | 44 | 44 | 31 | | | | | | | | | | | | | >5 | 14 | 259 | 5.96 | 0.18 | 115 | 888 | 64 | 36 | 0 | | 3 to 5 | 95 | 2331 | 3.73 | 0.30 | 84 | 1460 | 55 | 45 | 1 | | 2 to 3 | 102 | 2603 | 2.45 | 0.48 | 57 | 1670 | 59 | 53 | 5 | | 1 to 2 | 112 | 3346 | 1.41 | 0.80 | 46 | 2303 | 39 | 43 | 34 | | 0 to 1 | 59 | 1428 | 0.75 | 0.75 | 29 | 1607 | 7 | 37 | 80 | | No PI | 13 | <u>252</u> | | 0.51 | | 2414 | | | | | | 395 | 10,219 | | | | | | | | | 2011 Waters | shed Weighte | d Average | 2.25 | 0.58 | 57 | 1819 | 44 | 44 | 24 | | | | | | | | | | | | | >5 | 18 | 385 | 6.00 | 0.10 | 98 | 824 | 61 | 50 | 0 | | 3 to 5 | 103 | 2485 | 3.73 | 0.32 | 83 | 1413 | 53 | 45 | 3 | | 2 to 3 | 94 | 2347 | 2.45 | 0.51 | 59 | 1694 | 60 | 55 | 5 | | 1 to 2 | 100 | 3126 | 1.44 | 0.80 | 47 | 2373 | 41 | 42 | 32 | | 0 to 1 | 55 | 1313 | 0.74 | 0.75 | 32 | 1677 | 9 | 40 | 84 | | No PI | <u>13</u> | <u>253</u> | | 0.53 | | 2383 | | | | | | 383 | 9,910 | | | | | | | | | 2010 Waters | shed Weighte | d Average | 2.36 | 0.57 | 59 | 1820 | 44 | 45 | 23 | | | | | | | | | | | | | | shed Weighte | | 2.41 | 0.53 | 60 | 1821 | 45 | 49 | 22 | | | shed Weighte | | 2.54 | 0.51 | 60 | 1785 | 47 | 48 | 19 | | 2006 Waters | shed Weighte | d Average | 2.48 | 0.54 | 63 | 1741 | 54 | 50 | 19 | # **Evaluation** # **Evaluation** #### NORTH FORK CORNSTALK NITRATE TEST RESULTS -- 2009 | | | NORTI | H FORK CORNSTALK NITRATE TEST RESULTS - | 2009 | | | |----------|----------|----------------|---|-------------|----------------|--------------| | ID | Sample # | Stalk NO3-N | Nitrogen application | Estimated N | Rotation | Yield (bu/a) | | | | (ppm) | • " | (Iba/a) | | | | 24 | 4 | 5,900 | 190# 28% Spring | 190 | CC | 148 | | 1 | 4 | 5,640 | 160# NH3 spring, 15 ton solid manure | 236
150 | CC | 211 | | 19
19 | 1 4 | 5,210
4,650 | 150# 28% Spring,
105# 28% Spring, 3000 and liquid box spring. | 150
218 | CC | 197
223 | | 12 | - 7 | 4.256 | 105# 28% Spring, 3000 gal liquid hog spring
140# 28% spring, 36# DAP spring (poorer stand than comparison) | 176 | œ | 151 | | 4 | 2 | 4,120 | 15# urea spring, 11,000 gal liquid dairy injected Fall | 225 | CB | 217 | | 4 | 3 | 4,040 | 15# urea spring, 11,000 gai liquid dairy injected Fall | 225 | CC | 193 | | 32
20 | 3 | 3,890 | 28%, Extra Fertilizer Spring, Manure History | 150 | CC | 181 | | 17 | 1 3 | 3,870
3,750 | 90# 28% spring, 60# 28% side dress | 150 | CC | 187
203 | | 19 | 2 | 3,400 | 125#28% Spring, 7.5 ton/acre steer manure
150#28% Spring, | 150 | oc
oc | 151 | | 4 | ī | 3,250 | 100# Anhydrous and 15# urea Spring | 115 | CB | 205 | | 8 | 1 | 3,240 | 130# encapsulated urea Spring | 130 | CB | 193 | | 25 | 2 | 3,214 | 45# 28% spring, 35 ton/a free stall manure | 221 | CC | 181 | | 23 | 2 | 3,170 | 135# urea spring (40# P & 60#K) | 135 | CB | 190 | | 15
16 | 3 | 3,137
3,000 | 25# urea @ planting, 50# 28% side-dress, 60 ton/a spring manure
60# 28% side-dress, 2 ton/a dry fall manure, 3000 gal sping manure | 342
217 | CC | 168
208 | | 25 | 5 | 2,980 | 45# 28% spring, 12,000 gal liquid dairy spring manure | 207 | sod-C | 181 | | 17 | 2 | 2,870 | 50# 28% Spring, 4000 gai liquid hog | 200 | CB | 187 | | 33 | 2 | 2,840 | 120# Anhydrous spring | 120 | CB | 203 | | 1 2 | 1 2 | 2,760
2.590 | 160# NH3 spring | 160
209 | CC | 210
182 | | 25 | 6 | 2,590 | 150# 28% Spring, 4000 gal liquid dairy spring
30# 28% spring, 12,000 gal liquid dairy spring manure | 192 | sod-C | 176 | | 20 | 3 | 2.350 | 60# 28% spring, 12,000 gar liquid daily spring martine
60# 28% spring, 60# 28% side dress | 120 | СВ | 209 | | 12 | 2 | 2,293 | 140# 28% spring, 36# DAP spring | 175 | CC | 171 | | 13 | 3 | 2,280 | 110# 28% spring | 110 | CB | 181 | | 32 | 1 2 | 2,090
1,980 | 28%, Foliar Feed in Spring/Summer | 236 | oc | 175 | | 1 2 | 1 | 1,900 | 160# NH3 spring, 15 ton solid manure
150# 28% Spring, 4000 gai liquid dairy spring | 209 | 00 | 181
205 | | 22 | 2 | 1,860 | 90# 28% spring, 90# urea spring | 180 | õ | 211 | | 23 | 3 | 1,860 | 170# urea spring (no P & K) | 170 | CC | 175 | | 15 | 2 | 1,835 | 25# urea @ planting, 50# 28% side-dress, 60 ton/a fall manure | 342 | CC | 184 | | 16 | 4 | 1,806 | 40# 28% side-dress, 5500 gal fall/spring manure | 329
342 | BC | 211 | | 15
16 | 2 | 1,533
1,500 | 25# urea @ planting, 50# 28% side-dress, 60 ton/a fall manure
40# 28% side-dress, 5500 gal fall/spring manure (heavy lodging) | 342
309 | sod-C
sod-C | 170
176 | | 25 | 4 | 1,500 | 40# 20% side-dress, 5500 gal fairspring manure (neavy looging)
45# 28% spring, 12,000 gal liquid dairy fall manure | 309
207 | CC CC | 170 | | 16 | i | 1,469 | 40# 28% side-dress, 2 ton/a dry fall manure, 3000 gal sping manure | 197 | oc | | | 29 | 4 | 1,380 | 10 gal 28% starter spring, 6 ton/acre dairy and 100 gal hog manure sea | 78 | C-hay | 204 | | 20 | 2 | 1,350 | 60# 28% spring, 60# 28% side dress | 120 | CB | 223 | | 25 | 7 | 1,337 | 15# 28% spring, 12,000 gal liquid dairy spring manure | 177 | sod-C | 182 | | 25
29 | 8 | 1,316
1,300 | 12,000 gal liquid dairy spring manure
140 # Anhydrous Spring, 10 gal 28% starter spring, 6 ton/acre dairy and | 175
218 | sod-C
CC | 181
204 | | 24 | 2 | 1,250 | 160# 28% Spring | 160 | 00 | 199 | | 6 | 2 | 1,250 | 60# Ammonium Sulfate Fall, 14 ton/a shed manure seasonal | 131 | CC | 193 | | 22 | 4 | 1,220 | 90# 28% spring, 90# urea spring | 180 | CC | 203 | | 1_ | 3 | 1,170 | 160# NH3 spring, 10,000 gal pit manure
125# 28% Spring, 10,000 gal liquid hog | 295 | CC | 204 | | 17
23 | 1 | 1,150
1,110 | 125# 28% Spring, 10,000 gai liquid hog | 500
170 | CC | 196
182 | | 6 | - 1 | 1,110 | 170# urea spring (30# P & 40#K)
60# Ammonium Sulfate Fall, 14 ton/a shed manure seasonal | 170 | co | 210 | | 29 | i | 1.010 | 140 # Anhydrous Spring, 10 gal 28% starter spring, 6 ton/acre dairy and | 218 | oc | 182 | | 25 | 1 | 983 | 60# 28% spring, 15,000 gal liquid dairy fall manure, fall cover crop | 262 | CC | 180 | | - 11 | 2 | 805 | 60# urea w/planter, 15 tons shedded manure | 136 | CC | 199 | | 32 | 2 | 802 | 28% Spring | 280 | CB
CC | 180
203 | | 19
33 | 1 | 770
710 | 60# 28% Spring, 5860 gai liquid hog fall
140# NO3N Spring | 280
140 | C-sod | 203 | | 24 | i | 613 | 120# 28% Spring | 120 | CB | 187 | | 6 | 3 | 580 | 60# Ammonium Sulfate Fall, 14 ton/a shed manure seasonal | 131 | CC | 201 | | 13 | 2 | 571 | 110# 28% spring | 110 | CB | 180 | | 25 | 3 | 557 | 45# 28% spring, 35 ton/a free stall manure | 221 | oc | 175 | | 7
13 | 2 | 513
502 | 30# 28% Spring, 4000 gal liquid hog manure October 08.
110# 28% spring | 204
110 | CB
CB | 203
181 | | 29 | 3 | 470 | 140 # Anhydrous Spring, 10 gai 28% starter spring, 6 ton/acre dairy and | 218 | oc oc | 187 | | 22 | i | 451 | 90# 28% spring, | 90 | C-sod | 229 | | 3 | 1 | 450 | 100# Urea, 10 ton/acre Dairy free stall manure | 154 | CB | 198 | | 22 | 3 | 439 | 90# 28% spring, 50# urea spring | 140 | CB | 179 | | 23 | 4 | 423
412 | 135# urea spring (40# P & 60#K) | 135
342 | CB | 185
180 | | 15
7 | 1 | 374 | 25# urea @ planting, 50# 28% side-dress, 60 ton/a winter manure
30# 28% Spring, 4500 gai liguid hog manure Novemebr 08. | 225 | CC
CB | 198 | | 8 | 4 | 356 | 130# encapsulated urea Spring | 130 | CB | 182 | | 8 | 2 | 345 | 130# encapsulated urea Spring | 130 | CB | 218 | | 3 | 2 | 315 | 100# Urea, 10 ton/acre Dairy free stall manure | 154 | CB | 204 | | 35 | 3 | 291 | 160# 28% Spring | 160 | oc | 184 | | 24
18 | 3 | 289
284 | 190# 28% Spring
70 gal 28% Spring (196 wt), 3000 gal liquid hog | 190
309 | CB
CC | 181
193 | | 2 | 3 | 283 | No N or Manure | 0 | C-60d | 154 | | 18 | 2 | 276 | 62 gal 28% Spring (175 wt), 3000 gal liquid hog | 288 | CC | 193 | | 11 | 1 | 276 | 60# urea w/planter, 15 tons shedded manure | 136 | CO | 217 | | 11 | 4 | 262
251 | 60# urea wiplanter, 15 tons shedded manure | 136 | C-pasture | 193 | | 32
35 | 4 | 251
229 | 28% Spring
120# 28% & Foilar Spring | 120 | CC
CB | 176
174 | | 11 | 3 | 218 | 60# urea wiplanter, | 60 | oc oc | 181 | | 6 | 4 | 217 | 60# Ammonium Sulfate Fall, 14 ton/a shed manure seasonal | 131 | CC | 175 | | 8 | 3 | 216 | 130# encapsulated urea Spring | 130 | CB | 176 | | 35 | 4 | 208 | 120# 28% & Foliar Spring | 120 | CB | 144 | | 35 | 2 | 207 | 160# 28% Spring | 160 | CC | 163 | | 24 | 85 | 1,663 | | 185 | | 189 | | | | | | | | | | | 2005 | 2006 | 2007 | 2008 | 2010 | 2011 | |-------------------------------|------------|------------|----------|----------|------------|------------| | Phosphorus
Index | \$1,230 | \$13,400 | \$7,195 | \$7,830 | \$5,240 | \$7,015 | | Soil
Conditioning
Index | \$0 | \$31,612 | \$17,835 | \$16,013 | \$18,710 | \$16,292 | | Nitrogen
Performance | \$1,945 | \$6,650 | \$8,560 | \$3,930 | \$9,120 | \$6,900 | | Other incentives | \$20,465 | \$17,230 | \$9,725 | \$9,343 | \$12,700 | \$17,595 | | Watershed Performance | <u>\$0</u> | <u>\$0</u> | \$5,700 | \$4,200 | <u>\$0</u> | <u>\$0</u> | | Total
Incentives | \$23,640 | \$68,892 | \$54,765 | \$46,226 | \$45,770 | \$47,802 | | No. of Cooperators | 33 | 38 | 47 | 50 | 52 | 56 | # Evaluation - 30% reduction in stream nitrate - Watershed average IPI improved from 2.48 to 2.19 Installation and improvement of 150,000 feet of grassed waterways and vegetative buffers Family Biotic Index improved: 5.83 (fairly poor) to 4.74 (good) ## **Evaluation - Outcomes** - Watershed participation exceeds 75% - 19% reduction in stream nitrate with 2 years consecutive years less than 10 mg/L - 10,500 tons reduction of sediment delivery - Watershed average IPI improved from 2.70 to 2.18 - 3 denitrifying bioreactors installed ## **Evaluation - Outcomes** **Resident Leadership** Questions